融合知识图谱的双线性图注意力网络推荐算法Fusion Knowledge Graph and Bilinear Graph Attention Network Recommendation Algorithm
潘承瑞;何灵敏;胥智杰;王修晖;宋承文;
摘要(Abstract):
知识图谱可有效缓解传统协同过滤中的数据稀疏和冷启动问题,因此,近年来在推荐系统中融入知识图谱的方法成为重要的探索方向。然而现有的方法大多将知识图谱的网络结构划分为单独路径或仅利用了一阶邻居信息,造成无法建立整个图上的高阶连通性问题。为解决该问题,提出融合知识图谱和图注意力网络的KG-BGAT模型,并设计了双线性采集器。双线性采集器能够在信息采集阶段获取节点间的特征交互信息,丰富节点表示;图注意力网络通过递归嵌入传播算法将各个节点表示沿图进行传播,能够捕获图中的高阶连通性。在MovieLens-1M数据集上进行了Top-K推荐实验,在推荐列表长度为20时,精确率、召回率和归一化折损累计增益分别为29.4%、24.9%、67.4%,超过了目前主流的CKE、RippleNet、KGCN等融合知识图谱的推荐算法。实验证明提出的方法能够有效提高推荐结果的准确性。
关键词(KeyWords): 推荐系统;知识图谱;特征交互;图注意力网络
基金项目(Foundation): 国家自然科学基金(61303146)
作者(Author): 潘承瑞;何灵敏;胥智杰;王修晖;宋承文;
Email:
DOI:
参考文献(References):
- [1] RESNICK P,IACOVOU N,SUCHAK M,et al.GroupLens:An open architecture for collaborative filtering of netnews[C]//Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work,1994:175-186.
- [2] SINGHAL A.Introducing the knowledge graph:things,not strings[J].Official Google Blog,2012,16:1-8.
- [3]王冬青,殷红岩.基于知识图谱的个性化习题推荐系统设计研究[J].中国教育信息化,2019(17):81-86.
- [4] ZHANG F,YUAN N J,LIAN D,et al.Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2016:353-362.
- [5]李浩,张亚钏,康雁,等.融合循环知识图谱和协同过滤电影推荐算法[J].计算机工程与应用,2020,56(2):106-114.
- [6] CATHERINE R,COHEN W.Personalized recommendations using knowledge graphs:A probabilistic logic programming approach[C]//Proceedings of the 10th ACM Conference on Recommender Systems.2016:325-332.
- [7] WANG Q,MAO Z,WANG B,et al.Knowledge graph embedding:A survey of approaches and applications[J].IEEE Transactions on Knowledge and Data Engineering,2017,29(12):2724-2743.
- [8] SHA X,SUN Z,ZHANG J.Attentive knowledge graph embedding for personalized recommendation[J].arXiv:1910.8288,2019.
- [9] CUCURULL G,CASANOVA A,et al.Graph attention networks[J].arXiv:1710.10903,2017.
- [10] RENDLE S.Factorization machines[C]//Proceedings of2010 IEEE International Conference on Data Mining,2010:995-1000.
- [11] KOREN Y.Factorization meets the neighborhood:a multifaceted collaborative filtering model[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2008:426-434.
- [12] SUN Z,YANG J,ZHANG J,et al.Recurrent knowledge graph embedding for effective recommendation[C]//Proceedings of the 12th ACM Conference on Recommender Systems,2018:297-305.
- [13] SUN Z,GUO Q,YANG J,et al.Research commentary on recommendations with side information:A survey and research directions[J].Electronic Commerce Research and Applications,2019,37:100879.
- [14] WANG H,ZHAO M,XIE X,et al.RippleNet:Propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management,2018:417-426.
- [15] KIPF T N,WELLING M.Semi-supervised classification with graph convolutional networks[J].arXiv:1609.2907,2016.
- [16] WANG H,ZHAO M,XIE X,et al.Knowledge graph convolutional networks for recommender systems[C]//Proceedings of the World Wide Web Conference,2019:3307-3313.
- [17] AI Q,AZIZI V,CHEN X,et al.Learning heterogeneous knowledge base embeddings for explainable recommendation[J].Algorithms,2018,11(9):137.
- [18] CAO Y,WANG X,HE X,et al.Unifying knowledge graph learning and recommendation:Towards a better understanding of user preferences[C]//Proceedings of the World Wide Web Conference,2019:151-161.
- [19] LIN Y,LIU Z,SUN M,et al.Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of Twenty-Ninth AAAI Conference on Artificial Intelligence,2015.
- [20]赵京霞,钱育蓉,南方哲,等.CNN多层特征融合与ELM的乳腺疾病诊断方法[J].计算机工程与应用,2020,56(4):122-127.
- [21] HE X,CHEN T,KAN M,et al.TriRank:Review-aware explainable recommendation by modeling aspects[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management,2015:1661-1670.
- [22] RENDLE S,FREUDENTHALER C,GANTNER Z,et al.BPR:Bayesian personalized ranking from implicit feedback[J].arXiv:1205.2618,2012.
- [23] HE X,LIAO L,ZHANG H,et al.Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web,2017:173-182.
- [24] HE X,CHUA T.Neural factorization machines for sparse predictive analytics[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval,2017:355-364.