基于神经网络的知识推理研究综述Survey of Knowledge Reasoning Based on Neural Network
张仲伟;曹雷;陈希亮;寇大磊;宋天挺;
摘要(Abstract):
知识推理是知识图谱补全的重要手段,一直以来都是知识图谱领域的研究热点之一。随着神经网络不断取得新的发展,其在知识推理中的应用在近几年逐渐得到广泛重视。基于神经网络的知识推理方法具备更强的推理能力和泛化能力,对知识库中实体、属性、关系和文本信息的利用率更高,推理效果更好。简要介绍知识图谱及知识图谱补全的相关概念,阐述知识推理的概念及基本原理,从语义、结构和辅助存储三个维度展开,综述当下基于神经网络的知识推理最新研究进展,总结了基于神经网络的知识推理在理论、算法和应用方面存在的问题和发展方向。
关键词(KeyWords): 知识图谱;知识推理;神经网络
基金项目(Foundation): 国防科技重点实验室基金(No.61421010318);; 国家自然科学基金(No.61806221)
作者(Author): 张仲伟;曹雷;陈希亮;寇大磊;宋天挺;
Email:
DOI:
参考文献(References):
- [1]Bollacker K,Evans C,Paritosh P,et al.Freebase:a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMODInternational Conference on Management of Data.New York:ACM,2008:1247-1250.
- [2]Auer S,Bizer C,Kobilarov G,et al.DBpedia:a nucleus for a web of open data[C]//Proceedings of the 6th International Semantic Web Conference.Berlin,Heidelberg:Springer,2007:722-735.
- [3]丁建辉,贾维嘉.知识图谱补全算法综述[J].信息通信技术,2018(1):57-62.
- [4]官赛萍,靳小龙,贾岩涛,等.面向知识图谱的知识推理研究进展[J].软件学报,2018,29(10):74-102.
- [5]Tari L.Knowledge inference[M].New York:Springer,2013.
- [6]Russell S J,Norvig P.Artificial intelligence:a modern approach[J].Applied Mechanics&Materials,2010,263(5):2829-2833.
- [7]Kompridis N.So we need something else for reason to mean[J].International Journal of Philosophical Studies,2000,8(3):271-295.
- [8]漆桂林,高桓,吴天星.知识图谱研究进展[J].情报工程,2017,3(1):4-25.
- [9]徐增林,盛泳潘,贺丽荣,等.知识图谱技术综述[J].电子科技大学学报,2016,45(4):589-606.
- [10]刘峤,李杨,段宏,等.知识图谱构建技术综述[J].计算机研究与发展,2016,53(3):582-600.
- [11]Lao N,Cohen W W.Relational retrieval using a combination of path-constrained random walks[J].Machine Learning,2010,81(1):53-67.
- [12]Socher R,Chen D,Manning C D,et al.Reasoning with neural tensor networks for knowledge base completion[C]//Proceedings of Advances in Neural Information Processing Systems.Red Hook,NY:Curran Associates Inc,2013:926-934.
- [13]Chen Danqi,Socher R,Manning C D,et al.Learning new facts from knowledge bases with neural tensor networks and semantic word vectors[J].Computer Science,2013,11(1):392-399.
- [14]Bordes A,Usunier N,Garcia-Duran A,et al.Translating embeddings for modeling multi-relational data[C]//Proceedings of Advances in Neural Information Processing Systems.Red Hook,NY:Curran Associates Inc,2013:2787-2795.
- [15]Wang Z,Zhang J,Feng J,et al.Knowledge graph embedding by translating on hyperplanes[C]//Twenty-eighth AAAIConference on Artificial Intelligence,2014.
- [16]Lin Y,Liu Z,Sun M,et al.Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of AAAI.Menlo Park,CA:AAAI,2015.
- [17]Shi B,Weninger T.Proj E:embedding projection for knowledge graph completion[C]//Proceedings of the 31st AAAIConference on Artificial Intelligence,Menlo Park,CA,2017:1236-1242.
- [18]Xie Ruobing,Liu Z,Jia J,et al.Representation learning of knowledge graphs with entity descriptions[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence.Menlo Park,CA:AAAI,2016:2659-2665.
- [19]Tay Y,Tuan L A,Phan M C,et al.Multi-task neural network for non-discrete attribute prediction in knowledge graphs[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management,2017:1029-1038.
- [20]Shi B,Weninger T.Open-world knowledge graph completion[J].Computer Science,2017,5(2):22-31.
- [21]王奋昊.大规模知识图谱技术[J].中国计算机学会通讯,2014,3(10):64-68.
- [22]Lukovnikov D,Fischer A,Lehmann J,et al.Neural networkbased question answering over knowledge graphs on word and character level[C]//International World Wide Web Conference Committee(IW3C2),Perth,Australia,2017.
- [23]Schlichtkrull M,Kipf T N,Bloem P,et al.Modeling relational data with graph convolutional networks[J].arXiv preprint arXiv:1703.06103,2017.
- [24]Yang B,Yih W T,He X,et al.Embedding entities and relations for learning and inference in knowledge bases[C]//Proceesings of the International Conference on Learning Representations,2015:233-240.
- [25]Neelakantan A,Roth B,Mccallum A.Compositional vector space models for knowledge base completion[J].Computer Science,2015:1-16.
- [26]Lin Y,Liu Z,Sun M.Modeling relation paths for representation learning of knowledge bases[J].arXiv preprint arXiv:1506.00379,2015.
- [27]Das R,Neelakantan A,Belanger D,et al.Chains of reasoning over entities,relations,and text using recurrent neural networks[C]//Conference of the European Chapter of the Association for Computational Linguistics,2017.
- [28]Shen Y,Huang P S,Chang M W,et al.Modeling largescale structured relationships with shared memory for knowledge base completion[C]//Proceedings of the 2nd Workshop on Representation Learning for NLP.ACL,2017:57-68.
- [29]Graves A,Wayne G,Reynolds M,et al.Hybrid computing using a neural network with dynamic external memory[J].Nature,2016,538(7626):471-476.
- [30]Greff K,Srivastava R K,Koutník J,et al.LSTM:a search space odyssey[J].IEEE Transactions on Neural Networks&Learning Systems,2016,28(10):2222-2232.
- [31]Gers F A,Schmidhuber E.LSTM recurrent networks learn simple context-free and context-sensitive languages[J].IEEE Transactions on Neural Networks,2001,12(6):1333-1340.
- [32]Wang Z,Chen T,Ren J,et al.Deep reasoning with knowledge graph for social relationship understanding[J].arXiv preprint arXiv:1807.00504,2018.
- [33]Scarselli F,Gori M,Tsoi A C,et al.The graph neural network model[J].IEEE Transactions on Neural Networks,2009,20(1):61.
- [34]Ren S,He K,Girshick R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[C]//International Conference on Neural Information Processing Systems,2015.